Firebase SDK で Vertex AI を使用して Gemini API を使ってみる


このガイドでは、 Vertex AI Gemini API 選択したプラットフォーム用の Vertex AI in Firebase SDK。

前提条件

ステップ 1: Firebase プロジェクトを設定し、アプリを Firebase に接続する

Firebase プロジェクトと Firebase に接続されたアプリがすでにある場合

  1. Firebase コンソールで、 Gemini を使用した構築ページ

  2. Vertex AI in Firebase カードをクリックすると、以下に役立つワークフローを起動できます。 次のタスクを行います。(コンソールに Vertex AI の場合、これらのタスクは完了です)。

  3. このガイドの次のステップに進んで、SDK をアプリに追加します。

Firebase プロジェクトと Firebase に接続されたアプリがまだない場合


ステップ 2: SDK を追加する

Firebase プロジェクトを設定し、アプリを Firebase に接続したら、 (前のステップを参照)これで、Vertex AI in Firebase SDK をアプリに追加できるようになりました。

ステップ 3: Vertex AI サービスと生成モデルを初期化する

API 呼び出しを行う前に、Vertex AI を初期化する必要があります。 生成モデルの違いです

スタートガイドを読み終えたら、 Gemini モデルと(必要に応じて) location を使用します。

ステップ 4: Vertex AI Gemini API を呼び出す

アプリを Firebase に接続し、SDK を追加して初期化を終えたので、 Vertex AI サービスと生成モデル、 Vertex AI Gemini API を呼び出す準備が整いました。

generateContent() を使用すると、テキストのみのプロンプトからテキストを生成できます。 request:

<ph type="x-smartling-placeholder">で確認できます。

Google アシスタントの機能

Gemini モデルの詳細

詳しくは、 さまざまなユースケースで利用可能な および 割り当てと料金をご確認ください。

Gemini API のその他の機能を試す

コンテンツの生成を制御する方法

で確認できます。 また、Terraform を使用してプロンプトやモデル構成をテストすることもできます。 Vertex AI Studio


フィードバックを送信 Vertex AI in Firebase の感想をお聞かせください。