Vorlage für pgvector-Abruf
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Sie können PostgreSQL und pgvector
als Retriever-Implementierung verwenden. Verwenden Sie das folgende Beispiel als Ausgangspunkt und passen Sie es an Ihr Datenbankschema an.
import { genkit, z, Document } from 'genkit';
import { googleAI, textEmbedding004 } from '@genkit-ai/googleai';
import { toSql } from 'pgvector';
import postgres from 'postgres';
const ai = genkit({
plugins: [googleAI()],
});
const sql = postgres({ ssl: false, database: 'recaps' });
const QueryOptions = z.object({
show: z.string(),
k: z.number().optional(),
});
const sqlRetriever = ai.defineRetriever(
{
name: 'pgvector-myTable',
configSchema: QueryOptions,
},
async (input, options) => {
const embedding = (await ai.embed({
embedder: textEmbedding004,
content: input,
}))[0].embedding;
const results = await sql`
SELECT episode_id, season_number, chunk as content
FROM embeddings
WHERE show_id = ${options.show}
ORDER BY embedding <#> ${toSql(embedding)} LIMIT ${options.k ?? 3}
`;
return {
documents: results.map((row) => {
const { content, ...metadata } = row;
return Document.fromText(content, metadata);
}),
};
}
);
Und so verwenden wir den Retriever in einem Ablauf:
// Simple flow to use the sqlRetriever
export const askQuestionsOnGoT = ai.defineFlow(
{
name: 'askQuestionsOnGoT',
inputSchema: z.string(),
outputSchema: z.string(),
},
async (inputQuestion) => {
const docs = await ai.retrieve({
retriever: sqlRetriever,
query: inputQuestion,
options: {
show: 'Game of Thrones',
},
});
console.log(docs);
// Continue with using retrieved docs
// in RAG prompts.
//...
}
);
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-07-25 (UTC).
[null,null,["Zuletzt aktualisiert: 2025-07-25 (UTC)."],[],[],null,["# pgvector retriever template\n\n\u003cbr /\u003e\n\nYou can use PostgreSQL and `pgvector` as your retriever implementation. Use the\nfollowing example as a starting point and modify it to work with your database\nschema. \n\n import { genkit, z, Document } from 'genkit';\n import { googleAI, textEmbedding004 } from '@genkit-ai/googleai';\n import { toSql } from 'pgvector';\n import postgres from 'postgres';\n\n const ai = genkit({\n plugins: [googleAI()],\n });\n\n const sql = postgres({ ssl: false, database: 'recaps' });\n\n const QueryOptions = z.object({\n show: z.string(),\n k: z.number().optional(),\n });\n\n const sqlRetriever = ai.defineRetriever(\n {\n name: 'pgvector-myTable',\n configSchema: QueryOptions,\n },\n async (input, options) =\u003e {\n const embedding = (await ai.embed({\n embedder: textEmbedding004,\n content: input,\n }))[0].embedding;\n const results = await sql`\n SELECT episode_id, season_number, chunk as content\n FROM embeddings\n WHERE show_id = ${options.show}\n ORDER BY embedding \u003c#\u003e ${toSql(embedding)} LIMIT ${options.k ?? 3}\n `;\n return {\n documents: results.map((row) =\u003e {\n const { content, ...metadata } = row;\n return Document.fromText(content, metadata);\n }),\n };\n }\n );\n\nAnd here's how to use the retriever in a flow: \n\n // Simple flow to use the sqlRetriever\n export const askQuestionsOnGoT = ai.defineFlow(\n {\n name: 'askQuestionsOnGoT',\n inputSchema: z.string(),\n outputSchema: z.string(),\n },\n async (inputQuestion) =\u003e {\n const docs = await ai.retrieve({\n retriever: sqlRetriever,\n query: inputQuestion,\n options: {\n show: 'Game of Thrones',\n },\n });\n console.log(docs);\n\n // Continue with using retrieved docs\n // in RAG prompts.\n //...\n }\n );"]]