می توانید از PostgreSQL و pgvector
به عنوان پیاده سازی بازیابی خود استفاده کنید. از مثال زیر به عنوان نقطه شروع استفاده کنید و آن را برای کار با طرح پایگاه داده خود تغییر دهید.
import { embed } from '@genkit-ai/ai/embedder';
import { Document, defineRetriever, retrieve } from '@genkit-ai/ai/retriever';
import { defineFlow } from '@genkit-ai/flow';
import { textEmbeddingGecko } from '@genkit-ai/vertexai';
import { toSql } from 'pgvector';
import postgres from 'postgres';
import { z } from 'zod';
const sql = postgres({ ssl: false, database: 'recaps' });
const QueryOptions = z.object({
show: z.string(),
k: z.number().optional(),
});
const sqlRetriever = defineRetriever(
{
name: 'pgvector-myTable',
configSchema: QueryOptions,
},
async (input, options) => {
const embedding = await embed({
embedder: textEmbeddingGecko,
content: input,
});
const results = await sql`
SELECT episode_id, season_number, chunk as content
FROM embeddings
WHERE show_id = ${options.show}
ORDER BY embedding <#> ${toSql(embedding)} LIMIT ${options.k ?? 3}
`;
return {
documents: results.map((row) => {
const { content, ...metadata } = row;
return Document.fromText(content, metadata);
}),
};
}
);
و در اینجا نحوه استفاده از رتریور در یک جریان آورده شده است:
// Simple flow to use the sqlRetriever
export const askQuestionsOnGoT = defineFlow(
{
name: 'askQuestionsOnGoT',
inputSchema: z.string(),
outputSchema: z.string(),
},
async (inputQuestion) => {
const docs = await retrieve({
retriever: sqlRetriever,
query: inputQuestion,
options: {
show: 'Game of Thrones',
},
});
console.log(docs);
// Continue with using retrieved docs
// in RAG prompts.
//...
}
);